Introduction
Topologyisastructureonacollection.LetTbethesubsetfamilyofnon-emptysetX.IfTmeetsthefollowingconditions:
1.XandtheemptysetbelongtoT;
2.TheintersectionofanyfinitenumberofmembersinTbelongstoT;
3.TheunionofanymemberofTbelongstoT;
ThenTiscalledatopologyonX.AsetXwithatopologyTiscalledatopologicalspace,denotedas(X,T).
LetT1andT2bethetwotopologiesonthesetX.IfitisrelatedtoT1T2,thenT1issaidtobethickerthanT2,orT2isthinnerthanT1.WhentwotopologiesonXhavenocontainmentrelationshipwitheachother,theyaresaidtobeincomparable.OnsetX,discretetopologyisthefinesttopology,andtrivialtopologyisthethickesttopology.
Mathematicalterms
Axioms
LetXbeanon-emptyset,asubsetofthepowersetofX(thatis,somesubsetofXSetfamily)TiscalledatopologyofX.Ifandonlyif:
1.BothXandtheemptyset{}belongtoT;
2.TheunionofanynumberofmembersinTisstillinT;
3.TheintersectionofalimitednumberofmembersinTisstillinT.
CallthesetXanditstopologyτatopologicalspace,denotedas(X,T).
CallthemembersofTastheopensetofthistopologicalspace.
Thethreeconditionsinthedefinitionarecalledtopologicalaxioms.(Condition(3)canbeequivalentlyreplacedbytheintersectionoftwomembersinτ,whichisstillinτ.)
Fromthepointofviewofdefinition,atopologyofasetistospecifywhichsubsetsofit.Itisopenset.Theseregulationsarenotarbitrary,andmustsatisfythreetopologicalaxioms.
Generallyspeaking,manydifferenttopologiescanbespecifiedonaset,sowhentalkingaboutatopologicalspace,itisnecessarytospecifythesetandthespecifiedtopologyatthesametime.Withoutcausingmisunderstanding,asetisoftenusedtorefertoatopologicalspace,suchastopologicalspaceX,topologicalspaceY,andsoon.
Atthesametime,inthetopologicalcategory,wediscusscontinuousmapping.Itisdefinedas:f:(X,T1)------>(Y,T2)(T1,T2isthetopologydefinedabove)iscontinuousifandonlyifthepre-imageoftheopensetisopenset.Twotopologicalspacesarehomeomorphicifandonlyifthereisaone-to-onecorrespondingreciprocalcontinuousmapping.Atthesametime,mappinghomotopyandspatialhomotopyequivalencearealsousefuldefinitions.
Example
1.TheEuclideanspaceisatopologicalspaceinthesenseoftheusualopenset,anditstopologyisthesetofallopensets.
2.LetXbeanon-emptyset.Thenthesett:{X,{}}isatopologyofX.CalltthetrivialtopologyofX.Obviously(X,t)hasonlytwoopensets,Xand{}.
3.LetXbeanon-emptyset.ThenthepowersetofXT=2^XisalsoatopologyofX.CallTthediscretetopologyofX.ObviouslyanysubsetofXisanopensetof(X,T).
4.Aconcreteexample.LetX={1,2}.Then{X,{},{1}}isatopologyofX,{X,{},{2}}isalsoatopology,{X,{},{1},{2}}isatopology(asknownbythedefinition).
Origin
1.KönigsbergTheSevenBridgesProblem
Inmathematics,thesevenbridgesofKönigsberg,Euler'stheoremofpolyhedrons,andfour-colorproblemsareallimportantissuesinthehistoryoftopology.Königsberg(present-dayKaliningrad,Russia)isthecapitalofEastPrussia,andthePlegelRivertraversesit.Sevenbridgeswerebuiltonthisriverintheeighteenthcentury,connectingthetwoislandsinthemiddleoftheriverwiththebank.Peopleoftentakeawalkhereintheirleisuretime.Onedaysomeoneasked:Canyouwalkeachbridgeonlyonce,andfinallyreturntoitsoriginalposition.Thisseeminglysimpleandinterestingquestionattractedeveryone.Manypeoplearetryingvariousways,butnoonehasdoneit.Itseemsthatitisnotsoeasytogetaclearandidealanswer.
In1736,someonetookthisquestiontoEuler,agreatmathematicianatthetime.Aftersomethinking,Eulerquicklygavetheanswerinauniqueway.Eulerfirstsimplifiedthisproblem.Heregardedthetwosmallislandsandthebanksoftheriverasfourpoints,andthesevenbridgesastheconnectionbetweenthesefourpoints.Thenthequestionissimplifiedto,canthefigurebedrawninonestroke?Afterfurtheranalysis,Eulerconcludedthatitisimpossibletowalkthrougheverybridgeandfinallyreturntotheoriginalposition.Andgiventheconditionsthatallgraphicsthatcanbedrawninonestrokeshouldhave.Thisisthe"firstsign"oftopology.
2.PolyhedronEuler'sTheorem
Inthehistoryoftopology,thereisanotherfamousandimportantThetheoremaboutpolyhedronsisalsorelatedtoEuler.Thecontentofthistheoremis:Ifthenumberofverticesofaconvexpolyhedronisv,thenumberofedgesise,andthenumberoffacesisf,thentheyalwayshavethisrelationship:f+v-e=2.
AccordingtoEuler'stheoremofpolyhedrons,aninterestingfactcanbedrawn:thereareonlyfivekindsofregularpolyhedrons.
Theyareregulartetrahedron,regularhexahedron,regularoctahedron,regulardodecahedron,regularicosahedron.
3.Four-colorconjecture
Thefamous"four-colorproblem"isalsoaproblemrelatedtothedevelopmentoftopology.Thefour-colorproblem,alsoknownasthefour-colorconjecture,isoneofthethreemajormathematicalproblemsinmoderntimesintheworld.Thefour-colorconjecturecamefromtheUnitedKingdom.In1852,whenFernancisGuthrie,whograduatedfromtheUniversityofLondon,cametoascientificresearchunittodomapcoloringwork,hediscoveredaninterestingphenomenon:"Itseemsthateverymapcanbecoloredwithfourcolors,sothatCountrieswithcommonbordersareallgivendifferentcolors."
In1872,Kelly,themostfamousBritishmathematicianatthetime,formallyaskedthisquestiontotheLondonMathematicalSociety,andthefour-colorconjecturebecameworldmathematics.Issuesofconcerntotheworld.Manyfirst-classmathematiciansintheworldhaveparticipatedinthebattleofthefour-colorconjecture.Between1878and1880,famouslawyersandmathematiciansKempandTaylorrespectivelysubmittedpapersprovingthefour-colorconjectureandannouncedthattheyhadprovedthefour-colortheorem.ButlaterthemathematicianHerwoodpointedoutthatKemp'sproofwaswrongwithhisprecisecalculations.Soon,Taylor'sproofwasalsodenied.Asaresult,peoplebegantorealizethatthisseeminglyeasyproblemisactuallyadifficultproblemcomparabletoFermat'sconjecture.
Sincethebeginningofthe20thcentury,scientistshavebasicallyproceededtoprovethefour-colorconjectureinaccordancewithKemp'sideas.Aftertheadventofelectroniccomputers,duetotherapidincreaseincalculationspeedandtheemergenceofhuman-computerdialogue,theprocessofprovingthefour-colorconjecturehasbeengreatlyaccelerated.In1976,AmericanmathematiciansAppelandHarkenspent1,200hoursontwodifferentelectroniccomputersattheUniversityofIllinois,made10billionjudgments,andfinallycompletedtheproofofthefour-colortheorem.However,manyscientistsarenotsatisfiedwiththeachievementsofcomputers.Theybelievethatthereshouldbeasimpleandclearmethodofwrittenproof.
Theaboveseveralexamplestalkedaboutsomeproblemsrelatedtogeometricfigures,buttheseproblemsaredifferentfromtraditionalgeometry,butsomenewgeometricconcepts.Thesearetheprecursorsof"topology".
Definition
TheEnglishnameoftopologyisTopology,andtheliteraltranslationistopography,whichisarelateddisciplinesimilartothestudyoftopographyandlandforms.InearlyChina,itwastranslatedinto"SituationalGeometry","ContinuousGeometry",and"GeometryunderOne-to-OneContinuousTransformationGroup".However,thesetranslationnamesarenotveryeasytounderstand.Theunified"MathematicsNouns"wasunifiedin1956.Determineitastopology,whichisbasedontransliteration.
Topologyisabranchofgeometry,butthiskindofgeometryisdifferentfromtheusualplanegeometryandsolidgeometry.Theusualresearchobjectsofplanegeometryorsolidgeometryarethepositionalrelationshipbetweenpoints,linesandsurfacesandtheirmeasurementproperties.Topologyhasnothingtodowiththelength,size,area,volumeandothermetricpropertiesandquantitativerelationshipsoftheresearchobjects.
Forexample,intheusualplanegeometry,onefigureontheplaneismovedtoanotherfigure.Iftheycompletelyoverlap,thetwofiguresarecalledcongruent.However,thegraphstudiedintopologychangesregardlessofitssizeorshapeinmotion.Therearenoelementsthatcannotbebentintopology,andthesizeandshapeofeachfigurecanbechanged.Forexample,whenEulersolvedtheproblemoftheSevenBridgesofKönigsberg,hedrewgraphicswithoutconsideringitssizeandshape,onlythenumberofpointsandlines.
Properties
Thecentraltaskoftopologyistostudytheinvarianceoftopologicalproperties.
Whatarethetopologicalproperties?First,weintroducetopologicalequivalence,whichisatopologicalpropertythatisrelativelyeasytounderstand.
Intopology,theconceptofcongruenceoftwographsisnotdiscussed,buttheconceptoftopologicalequivalenceisdiscussed.Forexample,eventhoughtheshapesandsizesofcircles,squares,andtrianglesaredifferent,theyareallequivalentfiguresundertopologicaltransformation.Choosesomepointsonaspheretoconnectthemwithdisjointlines,sothatthesphereisdividedintomanypiecesbytheselines.Undertopologicaltransformation,thenumberofpoints,lines,andblocksisstillthesameastheoriginalnumber,whichistopologicalequivalence.Generallyspeaking,foraclosedsurfaceofanyshape,aslongasthesurfaceisnottornorcut,itstransformationisatopologicaltransformation,andthereistopologicalequivalence.
Itshouldbepointedoutthatthetorusdoesnothavethisproperty.Imaginethatifthetorusiscut,itwillnotbedividedintomanypieces,butitwillbecomeacurvedbarrel.Inthiscase,wesaythatthespherecannotbetopologicallyturnedintoatorus.Sothesphericalsurfaceandthetorusaredifferentsurfacesintopology.
Thecombinationandsequencerelationshipofpointsandlinesonastraightlineareunchangedundertopologicaltransformation,whichisatopologicalproperty.Intopology,theclosedpropertiesofcurvesandsurfacesarealsotopologicalproperties.
Theplaneandcurvedsurfaceweusuallytalkaboutusuallyhavetwosides,justlikeapieceofpaperhastwosides.ButtheGermanmathematicianMobius(1790~1868)discoveredtheMobiussurfacein1858.Thiskindofsurfacecannotbepaintedontwosideswithdifferentcolors.
Mobiustape
In1858,Mobiusdiscoveredthatastripofpaperthatwastwistedby180°andgluedonbothendshadmagicalproperties.Becauseordinarypapertapehastwosides(thatis,double-sidedcurvedsurfaces),onefrontsideandonereverseside,andthetwosidescanbepaintedindifferentcolors;whilesuchpapertapeshaveonlyoneside(thatis,single-sidedcurvedsurfaces),onesmallThewormcancrawlacrosstheentiresurfacewithouthavingtocrossitsedges!Wecallthismagicalsingle-sidedpapertapediscoveredbyMobiusthe"Mobiustape".
Takealongwhitepaper,paintonesideblack,turnoneendover,andglueitintoaMobiustapeasshowninFigure1.CutitalongthecenterofthetapewithscissorsasshowninFigure1.Youwillbesurprisedtofindthatnotonlyisthepapertapenotdividedintotwo,butapapercirclethatistwiceaslongasshowninFigure1iscutout!
What’sinterestingisthatthenewlyobtainedlongerpapercircleitselfisadouble-sidedcurvedsurface.Althoughitstwobordersarenotknotted,theyarenestedtogether!Inordertoletthereadersintuitivelyseethisfactthatisnoteasytoimagine,wecancuttheabovepapercircleagainalongthecenterline,thistimeitcanreallybedividedintotwo!Whatyougetaretwopapercirclesthatarenestingaroundeachother,andtheoriginaltwobordersarecontainedinthetwopapercircles,buteachpapercircleitselfisnotknotted.
Forexample,athree-leafknotwillbeformedafterabeltthatisrotatedthreeandahalfturnsandcut.Aftercuttingthetape,rotateit,andthenpasteitagain,itwillbecomeseveralParadromics.
TheMobiusstripisoftenregardedasthecreativesourceoftheinfinitysymbol"∞",becauseifsomeonestandsonthesurfaceofahugeMobiusstripalongwhathecansee""Theroad"keepsgoing,andhewillneverstop.Butthisisanuntruerumor,because"∞"wasinventedearlierthantheMobiusbelt.
TheMobiusbelthasevenmoreexoticcharacteristics.SomeproblemsthatcouldnotbesolvedontheplaneweresolvedincredibleontheMobiusbelt!
Forexample,theproblemofglovetranslocationthatcannotbeachievedinordinaryspace:Althoughtheglovesoftheleftandrighthandsofapersonareverysimilar,theyarefundamentallydifferent.Itisimpossibleforustoputthegloveofthelefthandontherighthand;norcanweputthegloveoftherighthandonthelefthand.Nomatterhowyoutwistaround,theleftglovewillalwaysbetheleftglove,andtherightglovewillalwaysbetherightglove!However,ifyoubroughtittoMobius,itwillbeeasytosolve.
Therearemanyobjectsinnaturethataresimilartogloves.Theyhavecompletelysimilarsymmetricalparts,butoneisleft-handedandtheotherisright-handed.Thereisahugedifferencebetweenthem.
The"Mobiusbelt"hassomeusesinlifeandproduction.Forexample,thebeltofapowermachinethatisconveyedbyabeltcanbemadeintoa"Mobiusbelt"sothatthebeltwillnotonlywearoutononeside.Ifthetapeofthetaperecorderismadeintoa"Mobiustape",therewillbenoproblemofbothsides,andthetapewillhaveonlyoneside.
RubberGeometry
TheMobiusstripisatopologicalfigure.Whatistopology?Topologystudiessomepropertiesofgeometricfigures.Theyremainunchangedwhenthefigureisbent,enlarged,reducedorarbitrarilydeformed.Aslongastheoriginaldifferentpointsarenotoverlappedintothesamepointduringthedeformationprocess,theywillnotproduceNewpoint.Inotherwords,theconditionofthistransformationisthatthereisaone-to-onecorrespondencebetweenthepointsoftheoriginalfigureandthepointsofthetransformedfigure,andtheadjacentpointsarestilladjacentpoints.Suchtransformationiscalledtopologicaltransformation.Thereisanimageoftopology-rubbergeometry.Becauseifthegraphicsareallmadeofrubber,manygraphicscanbetopologicallytransformed.Forexample,arubberbandcanbetransformedintoacircleorasquarecircle.ButarubberbandcannotbetransformedintoanArabicnumeral8bytopologicaltransformation.Becausethetwopointsonthecirclearenotoverlapped,thecirclewillnotbecome8,andthe"Mobiusbelt"justmeetstheaboverequirements.Therearemanyinvariancesandinvariantsoftopologicaltransformation,whichwillnotbeintroducedhere.
Topology
Aftertheestablishmentoftopology,duetothedevelopmentneedsofothermathematicsdisciplines,ithasalsobeendevelopedrapidly.EspeciallyafterRiemannfoundedRiemanniangeometry,hetooktheconceptoftopologyasthebasisofanalysisfunctiontheory,whichfurtherpromotedtheprogressoftopology.
Sincethe20thcentury,settheoryhasbeenintroducedintotopology,openingupanewlookfortopology.Thestudyoftopologyhasbecomeaconceptaboutthecorrespondenceofanarbitrarysetofpoints.Someproblemsintopologythatrequireprecisedescriptioncanbediscussedusingsets.
Becauseofthecontinuityofalargenumberofnaturalphenomena,topologyhasthepossibilityofextensivelyconnectingvariouspracticalthings.Throughthestudyoftopology,thesetstructureofspacecanbeclarified,andthefunctionalrelationshipbetweenspacescanbegrasped.Sincethe1930s,mathematicianshavemademorein-depthresearchontopologyandputforwardmanynewconcepts.Forexample,theconceptofconsistentstructure,abstractdistanceandapproximatespaceconcept,andsoon.Thereisabranchofmathematicscalleddifferentialgeometry,whichusesdifferentialtoolstostudythebendingofcurvesandsurfacesnearapoint,whiletopologystudiestheglobalconnectionofsurfaces.Therefore,thereshouldbeacertainessentialconnectionbetweenthetwodisciplines..In1945,theAmericanChinesemathematicianChenXingshenestablishedtheconnectionbetweenalgebraictopologyanddifferentialgeometry,andpromotedthedevelopmentofoverallgeometry.
Today,topologyhasdevelopedintotwobranchesintheory.Abranchisfocusedontheuseofanalyticalmethods,calledpointsettopology,orcalledanalyticaltopology.Anotherbranchisfocusedonusingalgebraicmethodstostudy,calledalgebraictopology.Now,thesetwobrancheshaveaunifiedtrend.
Topologyhasawiderangeofapplicationsinfunctionalanalysis,Liegrouptheory,differentialgeometry,differentialequationsandmanyotherbranchesofmathematics.
Artterms
Take3DSMAXsoftwareasanexample.Aftercreatingobjectsandgraphics,eachvertexand/orfacewillbeassignedanumber.Usually,thesenumbersareusedinternally,andtheycandeterminetheverticesorfacesselectedataspecifiedtime.Thisnumericalstructureiscalledtopology.
Afterselectingavertexorfaceandapplyingamodifiertotheselectedobject,themodifierstackwillrecordthefaces/verticesitaffects.Ifyoureturntothestackselectionlevellater,youcanchangethetopologytoapplythemodifier.
Thetermtopologyreferstothestructureandnumberingoffacesandvertices.
Forexample,bycarefullysettingvariousparameters,youcanmaketheboxandthecylinderhavethesamenumberofvertices.Afterthat,youmightthinkthatyoucanusetheboxasadeformationtargetforthecylinder.However,becausethesetwoobjectsarecreatedusingverydifferentmethods,theorderofthevertexnumbersoftheseobjectswillbequitedifferent.Ifthedeformationisperformed,eachnumberedvertexwillbeturnedtothecorrespondingpositiononthedeformationtarget.Inthiscase,therearetwoobjectswithverydifferenttopologicalstructures.Ifyoudeformfromoneobjecttoanother,theobjectwillbendorturninsideoutwhendeformed.
Topology-relatedmodifierscanperformselectionoperationsonexplicitsub-objectswithtopologicalstructure.Modifiersforperformingoperationsorselectionsonexplicitverticesorfacesincludethe"EditMesh"and"MeshSelection"modifiers.Whenthesemodifiersareincludedinthestack,ifyouaccessthepreviousstackoperationandchangethetopology(thenumberandorderoffacesandvertices)passedtoit,theresultsmaybenegativelyaffected.Ifyoudothis,topologyrelatedwarningswillpromptyoutopayattentiontothissituation.
Toputitsimply,theso-calledtopologyistoredrawthemodelontheoriginalbasistoproduceaveryefficientmodel.Letthemodeldetailsenoughandthenumberoffacesisverysmall.Itwillhelpustomakeadvancedanimationinthefuture.Sothehigh-precisionmodelproducedbyZBrushcannotbeused.
Note:Topologyisalsocalledtopology
networkterminology
Interpretation
computernetworktopologyItisamethodtostudytherelationshipbetweenpointsandlinesthathavenothingtodowithsizeandshapeintopology.Thecomputerandcommunicationequipmentinthenetworkareabstractedasapoint,andthetransmissionmediumisabstractedasaline.Thegeometricfigurecomposedofpointsandlinesisthetopologicalstructureofthecomputernetwork.Thetopologicalstructureofthenetworkreflectsthestructuralrelationshipoftheentitiesinthenetwork.Itisthefirststepinbuildingacomputernetworkandthebasisfortherealizationofvariousnetworkprotocols.Ithasasignificantimpactontheperformanceofthenetwork,thereliabilityofthesystemandthecommunicationcost.Topologyinacomputernetworkreferstotheformandmethodofconnectingnodes.
Thenetworkunitssuchasworkstationsandserversinthenetworkareabstractedas"dots".Thecablesandthelikeinthenetworkareabstractedas"lines".Affectnetworkperformance,systemreliability,andcommunicationcosts.
Classification
1.Bustopology
ThebustopologyistocombinealldevicesinthenetworkItisdirectlyconnectedtothepublicbusthroughthecorrespondinghardwareinterface,andthenodescommunicateinabroadcastmode.Theinformationsentbyonenodecanbe"listened"toothernodesonthebus.Advantages:simplestructure,easywiring,highreliability,andeasytoexpand.Itisatopologicalstructureoftenusedinlocalareanetworks.Disadvantages:Alldataneedstobetransmittedthroughthebus,andthebusbecomesthebottleneckoftheentirenetwork;itismoredifficulttodiagnosefaults.ThemostfamousbustopologyisEthernet.
2.Startopology
Eachnodeisconnectedtothecentralnodebyaseparatecommunicationline.Advantages:simplestructure,easytoimplement,easytomanage,andeasytomonitorandeliminatethefailureoftheconnectionpoint.Disadvantages:Thecentralnodeisthereliablebottleneckoftheentirenetwork,andthefailureofthecentralnodewillcausethenetworktobeparalyzed.
3.Ringtopology
Eachnodeformsaclosedloopthroughcommunicationlines,anddataintheringcanonlybetransmittedinonedirection.Advantages:simplestructure,easytoimplement,suitablefortheuseofopticalfiber,longtransmissiondistance,anddefinitetransmissiondelay.Disadvantages:Eachnodeintheringnetworkbecomesthebottleneckofnetworkreliability,anynodefailurewillcausethenetworktobeparalyzed,andfaultdiagnosisisalsodifficult.ThemostfamousringtopologynetworkisTokenRing.
4.Treetopology
YesAhierarchicalstructureinwhichnodesareconnectedbylayers.Informationexchangeismainlycarriedoutbetweenupperandlowernodes,anddataexchangeisgenerallynotcarriedoutbetweenadjacentnodesornodesatthesamelevel.Advantages:simpleconnection,convenientmaintenance,suitableforapplicationrequirementsforgatheringinformation.Disadvantages:Theresourcesharingabilityislow,andthereliabilityisnothigh.Thefailureofanyworkstationorlinkwillaffecttheoperationoftheentirenetwork.
5.Meshtopology
Alsocalledirregularstructure,theconnectionbetweennodesisarbitrary,irregular.Advantages:Thesystemhashighreliabilityandisrelativelyeasytoexpand,butthestructureiscomplex,andeachnodeisconnectedtomultiplepoints,soroutingalgorithmsandflowcontrolmethodsmustbeused.Thecurrentwideareanetworkbasicallyusesameshtopology.
Topologyinphysics
Inphysics,topologyisusedinseveralfields,suchascondensedmatterphysics,quantumfieldtheory,andphysicalcosmology.
Thetopologicaldependenceofmechanicalpropertiesinsolidsisofinterestinthedisciplinesofmechanicalengineeringandmaterialsscience.Electricalandmechanicalpropertiesdependonthearrangementandnetworkstructureofmoleculesandbasicunitsinthematerial.Thecompressivestrengthofthefoldtopologywasstudied,tryingtounderstandthehigh-strengthweightofthisstructure,whichismainlyemptyspace.Topologyisofgreatsignificanceincontactmechanics,wherethedependenceofstiffnessandfrictiononthedimensionalityofthesurfacestructureisthefocusofapplicationinmultibodyphysics.
Topologicalquantumfieldtheory(ortopologicalfieldtheoryorTQFT)isaquantumfieldtheoryforcalculatingtopologicalinvariants.
AlthoughTQFTwasinventedbyphysicists,theyalsohavemathematicalinterests,includingknottheoryandfour-divisionmanagementtheoryinalgebraictopology,andmodularspacetheoryinalgebraicgeometry.Donaldson,Jones,Witten,andKontevichhaveallreceivedfieldmedalsrelatedtotopologicalfieldtheory.
ThetopologicalclassificationoftheCalabi-Yaumanifoldisofgreatsignificanceinstringtheory,becausedifferentmanifoldscanwithstanddifferentkindsofstrings.
Incosmology,topologycanbeusedtodescribetheoverallshapeoftheuniverse.Thisareaiscalledspatio-temporaltopology.
Topologyintherobot
Thevariouspossiblepositionsoftherobotcanbedescribedbyamanifoldcalledtheconfigurationspace.Inthefieldofmotionplanning,thepathbetweentwopointscanbefoundintheconfigurationspace.Thesepathsrepresentthemovementoftherobot'sjointsandotherpartsintothedesiredpositionandposture.