RSA algorithm

ThesynonymRSAgenerallyreferstotheRSAalgorithm.

Introduction

RSApublickeycryptosystemisamethodthatusesdifferentencryptionkeysanddecryptionkeys."Decryptionisderivedfromknownencryptionkeys.Thekeyiscomputationallyinfeasible"cryptographicsystem."

Inthepublickeycryptosystem,theencryptionkey(thatis,thepublickey)PKispublicinformation,andthedecryptionkey(thatis,thesecretkey)SKneedstobekeptsecret.EncryptionalgorithmEanddecryptionalgorithmDarealsopublic.AlthoughthedecryptionkeySKisdeterminedbythepublickeyPK,SKcannotbecalculatedbasedonPK.

Basedonthistheory,thefamousRSAalgorithmappearedin1978.ItusuallygeneratesapairofRSAkeysfirst,oneofwhichisasecretkey,whichiskeptbytheuser;theotherisapublicsecret.Thekeycanbedisclosedtotheoutsideworldandcanevenberegisteredinawebserver.Inordertoimprovethesecuritystrength,theRSAkeyisatleast500bitslong,and1024bitsaregenerallyrecommended.Thismakesencryptioncomputationallyexpensive.Inordertoreducetheamountofcalculation,whentransmittinginformation,acombinationoftraditionalencryptionmethodsandpublickeyencryptionmethodsisoftenused,thatis,theinformationisencryptedwithanimprovedDESorIDEAconversationkey,andthentheRSAkeyisusedtoencrypttheconversationkeyandinformationSummary.Aftertheotherpartyreceivestheinformation,itcandecryptitwithadifferentkeyandcanchecktheinformationdigest.

RSAisthemostwidelystudiedpublickeyalgorithm.Ithasbeennearly30yearssinceitwasproposed.Ithasundergonevariousattacksandhasgraduallybeenacceptedbypeople.Itisgenerallyregardedasthebestpublickeyalgorithmcurrently.Oneofthekeyschemes.In1983,theMassachusettsInstituteofTechnologyappliedforapatentfortheRSAalgorithmintheUnitedStates.

RSAallowsyoutochoosethesizeofthepublickey.A512-bitkeyisconsideredinsecure;a768-bitkeydoesnothavetoworryaboutbeingcompromisedbyanythingotherthantheNationalSecurityAdministration(NSA);a1024-bitkeyisalmostsafe.RSAisembeddedinsomemajorproducts,suchasWindows,NetscapeNavigator,QuickenandLotusNotes.

PrincipleofAlgorithm

TheprincipleofRSApublickeycryptosystemis:Accordingtonumbertheory,itisrelativelysimpletofindtwolargeprimenumbers,butitisextremelydifficulttofactorizetheirproduct.Therefore,theproductcanbedisclosedasanencryptionkey.

Algorithmdescription

ThespecificdescriptionoftheRSAalgorithmisasfollows:

(1)Calculatetheproductoftwodifferentlargeprimenumberspandqarbitrarily

;

(2)Choosealargeintegerearbitrarily,satisfying,andtheintegereisusedastheencryptionkey(note:theselectionofeiseasy,forexample,Allprimenumbersgreaterthanpandqareavailable);

(3)Thedetermineddecryptionkeydsatisfies,thatis,isanarbitraryinteger;Therefore,ifyouknoweand,itiseasytocalculated;

(4)Opentheintegersnande,andkeepdsecretly;

(5)Decrypttheplaintextm(m

(6)Decrypttheciphertextcintoplaintextm,thedecryptionalgorithmis

However,itisimpossibletocalculatedbasedononlynande(note:notpandq).Therefore,anyonecanencrypttheplaintext,butonlyOnlyauthorizedusers(knowingd)candecrypttheciphertext.

Security

ThesecurityofRSAdependsonthedecompositionoflargenumbers,butwhetheritisequivalenttothedecompositionoflargenumbershasnotbeenobtained.Thetheoreticalproofdoesnotprovetodeciphertheoretically.ThedifficultyofRSAisequivalenttothedifficultyofdecompositionoflargenumbers.BecausethereisnoproofthatcrackingRSArequiresdecompositionoflargenumbers.Assumingthereisanalgorithmthatdoesnotrequiredecompositionoflargenumbers,thenItcandefinitelybemodifiedintoalargenumberdecompositionalgorithm,thatis,themajorflawofRSAisthatitisimpossibletograspitsconfidentialityperformancetheoretically,andmostpeopleincryptographytendtofactorizationisnotaNPCproblem.

Currently,RSASomevariantsofthealgorithmhavebeenprovedtobeequivalenttothedecompositionoflargenumbers.Inanycase,decompositionofnisthemostobviousattackmethod.Now,peoplehavebeenabletodecomposelargeprimenumberswithmorethan140decimalplaces.Therefore,themodulusnmustbeselectedlarger,Dependingonthespecificapplication.

ThesecuritystrengthoftheRSAalgorithmincreasesasthelengthofitskeyincreases.However,thelongerthekey,thelongerittakestoencryptanddecrypt.Therefore.,Itmustbeconsideredbasedonthesensitivityoftheprotectedinformation,thecostoftheattacker’scracking,andthereactiontimerequiredbythesystem,especiallyinthefieldofbusinessinformation.

Computationspeed

Becauseallcalculationsareperformedonlargenumbers,thefastestcaseofRSAisalsoseveraltimesslowerthanDES,whetheritisimplementedinsoftwareorhardware.Speed​​hasalwaysbeenadefectofRSA.Generallyspeaking,itisonlyusedforsmallamounts.Dataencryption.ThespeedofRSAissymmetricalthanthatofthecorrespondingsecuritylevelTheencryptionalgorithmisabout1000timesslower.

Algorithmicattacks

Sofar,therehavebeenmanyattacksonRSA,butnoneofthemposesarealthreattoit.Here,wediscusssometypicalattackmethods.

RSA'schoiceofpasswordattack

RSAisveryvulnerableinthefaceofchoiceofpasswordattack.Generally,anattackerdisguisesacertainpieceofinformationandallowstheentitypossessingtheprivatekeytosignit;then,aftercalculation,theinformationitwantscanbeobtained.Infact,theattacksexploitthesameweakness,thatis,thefactthatthepowerpreservesthemultiplicationstructureoftheinput.Asmentionedearlier,thisinherentproblemcomesfromthemostbasicfeatureofthepublickeycryptosystem,thatis,everyonecanusethepublickeytoencryptinformation.Thisproblemcannotbesolvedalgorithmically.Therearetwoimprovementmeasures:useagoodpublickeyprotocoltoensurethattheentitydoesnotdecrypttheinformationarbitrarilygeneratedbyotherentitiesduringtheworkprocess,anddoesnotsigninformationthatitdoesnotknow;thesecondisneverright.Arandomdocumentsentbyastrangerissigned,orthedocumentishashedfirstwhensigning,ordifferentsignaturealgorithmsareusedatthesametime.

RSA'ssmallexponentattack

Whenthepublickeyetakesasmallvalue,althoughtheencryptionbecomeseasiertoimplementandthespeedincreases,itisnotsafetodoso..Theeasiestwayistotakelargervalues​​forbotheandd.

Becausethekeygenerationisrestrictedbytheprimenumbergenerationtechnology,italsohasitslimitations.

(1)Thegenerationofthekeyisrestrictedbytheprimenumbergenerationtechnology,soitisdifficulttoachieveonekeyatatime;

(2)Thepacketlengthistoolarge,inordertoensuresecurity,nAtleast600bitsormore,makingthecalculationcostveryhigh,especiallytheslowerspeed,severalordersofmagnitudeslowerthanthesymmetricencryptionalgorithm;withtheimprovementoftheprimefactorizationalgorithmoflargeintegersandtheimprovementofcomputercomputingpower,thelengthofnisconstantlychangingTheincreaseisnotconducivetothestandardizationofdataformats.

Related Articles
TOP