Number Theory: A Historical Introduction from Hammurabi to Legendre

SynonymsNumberTheory(BookbyHigherEducationPress)GeneralIndexTheory:AHistoricalIntroductionfromHammurabitoLegendre

Introduction

Weil,whohasmadeoutstandingcontributionstonumbertheory,Wrotethe"NumberTheory:AHistoricalGuidefromHammurabitoLegendre",whichinterpretsthehistoryofnumbertheory;hisresearchcoversapproximatelythirty-sixcenturiesofarithmeticwork—fromapiecethatcanbetracedbacktoHanmuFromtheBabyloniantabletsoftheRabbinicaldynastytoLegendre's"OnNumbers"(1798).WeiYihasalwayshopedtotellreaderswithabettereducationalbackgroundabouthisresearchfield,whichpromptedhimtousehistoricalinterpretationmethodsintheanalysisofproblems,theevolutionofnumbertheorymethods,andtheirmeaninginmathematics.Inthecourseofhisdiscussion,Weilandreaderscametothestudiosofthefourmainauthorsofmodernnumbertheory(Fermat,Euler,Lagrange,Legendre),andconductedacarefulstudythere.,Inspectionwithacriticaleye."NumberTheory:AHistoricalGuidefromHammurabitoLegendre"isrichinthebroadcontentofknowledgehistory,andhasaveryimportantcontributiontounderstandingourculturalheritage.

Abouttheauthor

Author:(France)AndréWeilTranslator:XuMingweiSeriesEditor:QiuChengtongCommentary:WangYuan

A.Weil(AndreWeil,1906-1998),oneofthemostinfluentialmathematiciansofthe20thcentury,isoneofthefoundersandleadersofthefamousBourbakischoolinFrance.Hismaincontributionsareinthefieldsofalgebraicgeometry,numbertheory,grouptheory,andhistoryofmathematics.In1979,hewontheWolfPrizeforhis"excitingworkofintroducingalgebraicgeometryintonumbertheory".

ManyofWeiYi’sworksaremathematicsclassics,including"FoundationsofAlgebraicGeometry"(1946),"BasicNumberTheory"(BasicNumberTheory,1967),"TopologicalGroupsandTheirIntroductiontoApplications(LintegrationdanslesGroupesTopologiquesetsesAppfications,1940)andthisbook.

CatalogueofBooks

Prefaceto"MathematicsTranslationSeries"

Foreword

ListofIllustrations

Abbreviation,basicreferenceDocumentsandsigns

Chapter1NumberTheoryintheAboriginalPeriod

1.1Introduction

1.2PrimeNumbersandFactorization

1.3CompleteNumbers

1.4AProblem

1.5PythagoreanTriangle

1.6SumofTwoSquares

1.7FibonacciSum"TheSquareNumber"

1.8EarlyworkonPell'sequation

1.9Pell'sequation:ArchimedesandtheIndians

1.10LostEquationsofFantuandDiophantus

1.11DiophantusandtheSumofSquares

1.12TheRecoveryofDiophantus:VedicandBache

ChapterTwoFermatandhisletter

2.1Biography

2.2BinomialCoefficient

2.3Proofincomparisonwith"induction"

2.4PerfectnumbersandFermat'stheorem

2.5Initialexploration

2.6Thefirstattemptonthesecondremainder

2.7Theprimefactorofthesumoftwosquarenumbers

2.8Thesumoftwosquarenumbers

2.9Thenumberrepresentedbythesumoftwosquarenumbers

2.10Infinitedescentmethodandtheequationx4-y4=z2

p>

2.11ProblemsinFermat'smatureperiod

2.12"Elementary"quadraticform

2.13Peerequation

2.14Quadraticindeterminateequation

2.15Tracingtheoriginoftheequationofgenus1

2.16Discussingthedescentmethodagain

2.17Conclusion

AppendixIEuclidGetthequadraticdomain

AppendixIIGenus1curveinprojectivespace

AppendixIIIFermat's"doubleequation"asaquarticcurveinspace

AppendixIVDescentMethodandModel'sTheorem

AppendixVEquationy2=x3-2x

ChapterThreeEuler

3.1SixteenthCentury,SeventeenthScientificactivitiesinthe20thand18thcenturies

3.2Euler’slife

3.3EulerandGoldbach

3.4Euler’sdiscoveryofnumbertheory

p>

3.5RoleList(Dramatispersonae)

3.6MultiplicativeGroupsModuloIV

3.7"Real"vs."Virtual"

3.8MissTwoSub-ReciprocityLaw

3.9BinaryQuadraticForm

3.10Searchforlargeprimenumbers

p>

3.11SumofFourSquareNumbers

3.12SquareRootandContinuedFraction

3.13QuadraticDiophantineEquation

3.14OnDiofanagainGraphequation

3.15ellipticintegralandadditivetheorem

3.16ellipticcurveasDiophantineequation

3.17summationformulaand∑n

3.18Euler'ssumfunction

3.19Trigonometricfunction

Functionalequationof3.20function

3.21Partitionumerorumandmodularfunction

p>

3.22Conclusion

AppendixIQuadraticReciprocityLaw

AppendixIIAnelementaryproofofthesumofsquaresproblem

AppendixIIIEllipticcurveAdditionaltheorem

ChapterIVTransitionalPeriod:LagrangeandLegendre

4.1TheLifeofLagrange

4.2LagrangeandNumbertheory

4.3Indeterminateequations

4.4Lagrange’stheoryofbinaryquadraticforms

4.5Legendre’slife

4.6Legendre'sarithmeticwork

AppendixIHasseprincipleoftriplequadraticform

AppendixIILegendreproofofpositivebinaryquadraticform

AppendixIIIAProofofLagrange'sIndefiniteBinaryQuadraticForm

SupplementaryReferences

PostscriptofTranslation

WangYuanMr.LettertotheTranslator

NameIndex

ContentIndex

Related Articles
TOP