Joint distribution

Synonymjointprobabilitydistributiongenerallyreferstojointdistribution

Definition

Let(X,Y)beatwo-dimensionalrandomvariable,foranyrealnumberx,y,abinaryfunction:

F(x,y)=P{(X<=x)cross(Y<=y)}=>P(X<=x,Y<=y)

iscalled:Thedistributionfunctionoftwo-dimensionalrandomvariables(X,Y),orthejointdistributionfunctionofrandomvariablesXandY.

ThejointdistributionfunctionofrandomvariablesXandYisthat(X,Y)isatwo-dimensionalrandomvariable.Foranyrealnumberx,y,abinaryfunction:F(x,y)=P{(X<=x)cross(Y<=y)}=>P(X<=x,Y<=y)iscalledthedistributionfunctionoftwo-dimensionalrandomvariables(X,Y).

Geometricmeaning

JointprobabilityGeometricmeaningofdistribution

Ifthetwo-dimensionalrandomvariable(X,Y)isregardedasthecoordinatesofarandompointontheplane,thenthefunctionvalueofthedistributionfunctionF(x,y)at(x,y)isthattherandompoint(X,Y)fallsonthepoint(x,y)Theprobabilitythatthevertexislocatedintheinfiniterectangularregiontothelowerleftofthepoint.

Probabilitydistribution

Jointdistribution(5photos)

Inprobabilitytheory,fortworandomvariablesXandY,ThejointdistributionistheprobabilitydistributionforXandYatthesametime.

Two-dimensionalvariable

LetEbearandomexperiment,anditssamplespaceisS={e}.SupposeX=X(e)andY=Y(e)arerandomvariablesdefinedonS.Avector(X,Y)formedbythemiscalledatwo-dimensionalrandomvectororatwo-dimensionalrandomvariable.

Discretevariables

FordiscreterandomvariablesXandY,thejointdistributionprobabilitydensityfunctionisasfollows:

.Becauseitisaprobabilitydistributionfunction,thefollowingconditionsmustbemet:

.

Continuousvariables

Similarly,forcontinuousrandomvariables,thejointdistributionprobabilitydensityfunctionisfX,Y(x,y),wherefY|X(y|x)andfX|Y(x|y)representtheconditionaldistributionofYwhenX=xandtheconditionaldistributionofXwhenY=y;fX(x)andfY(y)representthemarginaldistributionofXandY,respectively.

Similarly,becauseitisaprobabilitydistributionfunction,theremustbe:∫x∫yfX,Y(x,y)dydx=1

independentvariables

Foranyxandy,therearediscreterandomvariables:

P(X=xandY=y)=P(X=x)·P(Y=y)

Ortherearecontinuousrandomvariables:

pX,Y(x,y)=pX(x)·pY(y)

ThenXandYareindependent.

Multivariatecombination

ThebinaryjointdistributioncanbeextendedtoanymultivariatecaseX1,...,Xn

fx1,…..,Xn(x1,….,xn)=fxn∣x1,...,xn-1(xn∣x1,...,xn-1)fx1,...,xn-1(x1,...,xn-1)

Related Articles
TOP