Hopfield neural network

Introduction

Hopfieldneuralnetworkisarecurrentneuralnetwork,inventedbyJohnHopfieldin1982.Hopfieldnetworkisaneuralnetworkthatcombinesstoragesystemandbinarysystem.Itguaranteesconvergencetothelocalminimum,butconvergestothewronglocalminimum(localminimum)insteadoftheglobalminimum(globalminimum)mayalsooccur.TheHopfieldnetworkalsoprovidesamodelthatsimulateshumanmemory.

DiscreteHopfieldnetworkisasingle-layernetworkwithnneuronnodes,andtheoutputofeachneuronisconnectedtotheinputofotherneurons.Eachnodehasnoself-feedback.Eachnodecanbeinapossiblestate(1or-1),thatis,whenthestimulationoftheneuronexceedsitsthreshold,theneuronisinastate(suchas1),otherwisetheneuronwillalwaysbeInanotherstate(suchas-1).Theentirenetworkhastwoworkingmodes:asynchronousmodeandsynchronousmode.

Construction

TheunitsoftheHopfieldnetworkarebinary,thatis,theseunitscanonlyaccepttwodifferentvalues,andthevaluedependsonwhetherthesizeoftheinputreachesthethreshold.TheHopfieldnetworkusuallyacceptsavalueof-1or1,butitcanalsobe0or1.Theinputisprocessedbythesigmoidfunction.Thesigmoidfunctionisdefinedas:

Itisusedtoreducetheinputtotwoextremevalues.

EverypairofHopfilednetworkunitsiandjhaveapairofconnectionswithacertainweight{\displaystylew_{ij}}.Therefore,theHopfilednetworkcanbedescribedasacompleteundirectedgraphG=,whereVisasetofartificialneurons.

TheconnectionoftheHopfilednetworkhasthefollowingcharacteristics:

Hopfield neural network

(noneuronsconnectedtoitself)

(Theconnectionweightissymmetric)

Therequirementofweightsymmetryisanimportantfeature,becauseitensuresthattheenergyequation(theprocessofconvergingtoacertainpointofthefunctionisconvertedintoenergyfrompotentialenergy)whentheneuronisactivatedMonotonouslydecreasing,asymmetricalweightsmaycauseperiodicincreasesornoise.However,theHopfilednetworkalsoprovesthatthenoiseprocesswillbelimitedtoasmallrangeanddoesnotaffectthefinalperformanceofthenetwork.

Application

AssociativememoryfunctionisanimportantapplicationrangeofdiscreteHopfieldnetwork.Torealizeassociativememory,thefeedbacknetworkmusthavetwobasicconditions:

①Thenetworkcanconvergetoastableequilibriumstateanduseitasthesamplememoryinformation;

②haveTheabilitytorecallistheabilitytorecallcompletememoryinformationfromacertainincompleteinformation.TheprocessofdiscreteHopfieldnetworktorealizeassociativememoryisdividedintotwostages:learningandmemorystageandassociativememorystage.Inthelearningandmemorystage,thedesignerdeterminesasetofappropriateweightsthroughacertaindesignmethodtomakethenetworkmemorythedesiredstablebalancepoint.TheLenovorecallstageistheworkingprocessofthenetwork.

ThediscreteHopfieldnetworkusedforassociativememoryhastwooutstandingcharacteristics:thatis,memoryisdistributed,whileassociationisdynamic.ThelimitationsofthediscreteHopfieldnetworkaremainlymanifestedinthefollowingpoints:

①Thefinitenessofmemorycapacity;

②Theassociationandmemoryofpseudo-stablepoints;

③Whenthememorysamplesareclose,thenetworkcannotalwaysrecallthecorrectmemory,etc.Inaddition,thebalanceandstabilitypointofthenetworkcannotbearbitrarilyset,andthereisnouniversalwaytoknowthebalanceandstabilitypointinadvance.

See

  • Boltzmannmachine-likeaHopfieldnetwork,annealingGibbssamplingcanbeusedinsteadofgradientdescent

  • IssingModel

  • HebbTheory

Related Articles
TOP